Parabolic Finite Volume Element Equations in Nonconvex Polygonal Domains

نویسنده

  • P. CHATZIPANTELIDIS
چکیده

We study spatially semidiscrete and fully discrete finite volume element approximations of the heat equation with homogeneous Dirichlet boundary conditions in a plane polygonal domain with one reentrant corner. We show that, as a result of the singularity in the solution near the reentrant corner, the convergence rate is reduced from optimal second order, similarly to what was shown for the finite element method in the earlier work [5]. Optimal order convergence may be restored by mesh refinement near the corners of the domain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parabolic Finite Element Equations in Nonconvex Polygonal Domains

Let Ω be a bounded nonconvex polygonal domain in the plane. Consider the initial boundary value problem for the heat equation with homogeneous Dirichlet boundary conditions and semidiscrete and fully discrete approximations of its solution by piecewise linear finite elements in space. The purpose of this paper is to show that known results for the stationary, elliptic, case may be carried over ...

متن کامل

Error Estimates for the Finite Volume Element Method for Parabolic Equations in Convex Polygonal Domains

We analyze the spatially semidiscrete piecewise linear finite volume element method for parabolic equations in a convex polygonal domain in the plane. Our approach is based on the properties of the standard finite element Ritz projection and also of the elliptic projection defined by the bilinear form associated with the variational formulation of the finite volume element method. Because the d...

متن کامل

Error Estimates for the Finite Volume Element Method for Elliptic Pde’s in Nonconvex Polygonal Domains

We consider standard finite volume piecewise linear approximations for second order elliptic boundary value problems on a nonconvex polygonal domain. Based on sharp shift estimates, we derive error estimations in H –, L2– and L∞–norm, taking into consideration the regularity of the data. Numerical experiments and counterexamples illustrate the theoretical results.

متن کامل

Error Estimates for a Finite Volume Element Method for Elliptic PDEs in Nonconvex Polygonal Domains

We consider standard finite volume piecewise linear approximations for second order elliptic boundary value problems on a nonconvex polygonal domain. Based on sharp shift estimates, we derive error estimations in H1-, L2and L∞-norms, taking into consideration the regularity of the data. Numerical experiments and counterexamples illustrate the theoretical results.

متن کامل

Some New Error Estimates of a Semidiscrete Finite Volume Element Method for Parabolic Integro-differential Equation with Nonsmooth Initial Data

A semidiscrete finite volume element(FVE) approximation to parabolic integrodifferential equation(PIDE) is analyzed in a two-dimensional convex polygonal domain. Optimal order L-error estimates are derived for both smooth and nonsmooth initial data. More precisely, for homogeneous equations, an elementary energy technique and duality argument is used to derive optimal L-error estimate of order ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007